Neural Contextual Conversation Learning with Labeled Question-Answering Pairs

نویسندگان

  • Kun Xiong
  • Anqi Cui
  • Zefeng Zhang
  • Ming Li
چکیده

Neural conversational models tend to produce generic or safe responses in different contexts, e.g., reply “Of course” to narrative statements or “I don’t know” to questions. In this paper, we propose an end-to-end approach to avoid such problem in neural generative models. Additional memory mechanisms have been introduced to standard sequence-to-sequence (seq2seq) models, so that context can be considered while generating sentences. Three seq2seq models, which memorize a fix-sized contextual vector from hidden input, hidden input/output and a gated contextual attention structure respectively, have been trained and tested on a dataset of labeled question-answering pairs in Chinese. The model with contextual attention outperforms others including the state-of-the-art seq2seq models on perplexity test. The novel contextual model generates diverse and robust responses, and is able to carry out conversations on a wide range of topics appropriately.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search-based Neural Structured Learning for Sequential Question Answering

Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquir...

متن کامل

Siamese Neural Networks with Random Forest for detecting duplicate question pairs

Determining whether two given questions are semantically similar is a fairly challenging task given the different structures and forms that the questions can take. In this paper, we use Gated Recurrent Units(GRU) in combination with other highly used machine learning algorithms like Random Forest, Adaboost and SVM for the similarity prediction task on a dataset released by Quora, consisting of ...

متن کامل

Non-sentential Question Resolution using Sequence to Sequence Learning

An interactive Question Answering (QA) system frequently encounters non-sentential (incomplete) questions. These non-sentential questions may not make sense to the system when a user asks them without the context of conversation. The system thus needs to take into account the conversation context to process the incomplete question. In this work, we present a recurrent neural network (RNN) based...

متن کامل

Duplicate Question Pair Detection with Deep Learning

Determining whether two questions are asking the same thing can be challenging, as word choice and sentence structure can vary significantly. Traditional natural language processing techniques such as shingling have been found to have limited success in separating related question from duplicate questions. Using a dataset of 400,000 labeled question pairs provided by question-and-answer forum Q...

متن کامل

Answering Complicated Question Intents Expressed in Decomposed Question Sequences

Recent work in semantic parsing for question answering has focused on long and complicated questions, many of which would seem unnatural if asked in a normal conversation between two humans. In an effort to explore a conversational QA setting, we present a more realistic task: answering sequences of simple but inter-related questions. We collect a dataset of 6,066 question sequences that inquir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.05809  شماره 

صفحات  -

تاریخ انتشار 2016